Antenna Web Design Studio V4.5 19 [HOT]
The amount of RF energy to which the public or workers might be exposed as a result of broadcast antennas depends on several factors, including the type of station, design characteristics of the antenna being used, power transmitted to the antenna, height of the antenna and distance from the antenna. Note that the power normally quoted for FM and TV broadcast transmitters is the "effective radiated power" or ERP not the actual transmitter power mentioned above. ERP is the transmitter power delivered to the antenna multiplied by the directivity or gain of the antenna. Since high gain antennas direct most of the RF energy toward the horizon and not toward the ground, high ERP transmission systems such as used for UHF-TV broadcast tend to have less ground level field intensity near the station than FM radio broadcast systems with lower ERP and gain values. Also, since energy at some frequencies is absorbed by the human body more readily than at other frequencies, both the frequency of the transmitted signal and its intensity is important. Calculations can be performed to predict what field intensity levels would exist at various distances from an antenna.
antenna web design studio v4.5 19
Point-to-point microwave antennas transmit and receive microwave signals across relatively short distances (from a few tenths of a mile to 30 miles or more). These antennas are usually circular dish or rectangular in shape and are normally mounted on a supporting tower, rooftop, sides of buildings or on similar structures that provide clear and unobstructed line-of-sight paths between both ends of a transmission path. These antennas have a variety of uses, such as relaying long-distance telephone calls, and serving as links between broadcast studios and transmitting sites.
Abstract:This paper presents a passive cavity type Ultra High Frequency (UHF) Radio Frequency Identification (RFID) tag antenna having the longest read-range, and compares it with existing long-range UHF RFID tag antenna. The study also demonstrates mathematically and experimentally that our proposed longest-range UHF RFID cavity type tag antenna has a longer read-range than existing passive tag antennas. Our tag antenna was designed with 140 60 10 mm3 size, and reached 26 m measured read-range and 36.3 m mathematically calculated read-range. This UHF tag antenna can be applied to metal and non-metal objects. By adding a further sensing capability, it can have a great benefit for the Internet of Things (IoT) and wireless sensor networks (WSN).Keywords: RFID tag antenna; long range RFID tag; cavity antenna; RFID metal tag; RFID sensors; Internet of things; wireless sensor network; RFID-based IoT; RFID based WSN; smart RFID
The Empire State Building is a 102-story[c] Art Deco skyscraper in Midtown Manhattan, New York City. The building was designed by Shreve, Lamb & Harmon and built from 1930 to 1931. Its name is derived from "Empire State", the nickname of the state of New York. The building has a roof height of 1,250 feet (380 m) and stands a total of 1,454 feet (443.2 m) tall, including its antenna. The Empire State Building was the world's tallest building until the first tower of the World Trade Center was topped out in 1970; following the September 11 attacks in 2001, the Empire State Building was New York City's tallest building until it was surpassed in 2012. As of 2022[update], the building is the seventh-tallest building in New York City, the ninth-tallest completed skyscraper in the United States, the 54th-tallest in the world, and the sixth-tallest freestanding structure in the Americas.
The Bolero high-clarity voice codec provides both higher speech intelligibility and more efficient use of RF spectrum supporting twice the number of beltpacks per antenna for the same radio bandwidth as other DECT-based systems. The Riedel-exclusive ADR technology combines a unique receiver design with multiple diversity elements specifically designed to reduce sensitivity to multipath reflections, making Bolero useable in challenging RF environments where other systems have great difficulty.